From Introductory
to
Advanced C++

Learning Guidelines

Slobodan Dmitrovic

About me

Slobodan Dmitrovic
e C++ Trainer

* R&D Developer

* Author

e linkedin.com/in/slobodan-dmitrovic/

https://www.linkedin.com/in/slobodan-dmitrovic/
https://www.linkedin.com/in/slobodan-dmitrovic/
https://www.linkedin.com/in/slobodan-dmitrovic/
https://www.linkedin.com/in/slobodan-dmitrovic/
https://www.linkedin.com/in/slobodan-dmitrovic/

Starting with C++

When starting with C++, first, we need to learn about the following
topics in the following order:

* The C++ language basics
* The C++ Standard Library basics

e Modern C++ standards

Establishing a solid knowledge-base is essential in the beginning.

The C++ Language Basics

* Types

* Declarations

* Operands

* Operators

* Expressions

e Statements

* Functions

* Classes

* Templates Basics (only a brief introduction is advised in the beginning)
* More, much more...

The C++ Standard Library basics

The C++ Standard Library basics include learning about the widely
used:

 Containers
* Algorithms

Modern C++ standards

* Modern C++ standards are C++11, C++14, C++17, C++20 and
C++23 standards.

* |nitially, we should concentrate on the notable features
of C++11, C++14, and C++17 standards, as those are the most
widely used standards in the industry.

What should we learn in the beginning?

° Built_in types o Statements
e Built-in statements
* Scope and lifetime

e Declaration

* Definition « Automatic and dynamic storage
* Initialization References

* Operands * Functions

* Operators * more...

* Expressions

What should we learn when it comes to C++
functions?

* Function declarations
* Function definitions
* Invoking a function

* Passing arguments by value, reference, and const-reference
* The return statement
* Function overloads

How do we start learning about C++ classes?

* Data members

* Member functions

* An instance of a class
* Visibility specifiers

* Constructors

* Member initializer lists
* Destructors

Learning about classes — next steps

* Copy and move semantics in C++

* Operator overloading

* Inheritance

* Virtual and overridden member functions
* Polymorphism

* Interfaces

10

How do we start learning about C++
templates?

* Basic function template declaration

* Basic class template declaration

* Template specialization

The right amount of template introduction

In the beginning, only a brief introduction to C++ template
programming is advised.

11

How do we learn the C++ Standard Library?

When starting with the C++ Standard Library, learn about the
following topics:

* Widely used containers (std::vector, std::array, std::set, std::map,
std::list...)

* [terators

* Widely used functions (std::find, std::find_if, std::sort, std::count,
std::count_if...)

We do not have to learn the entire standard library by heart. Initially,
we need to establish a solid knowledge base.

12

Learning about different C++ standards

Once we are familiar with the C++ language and C++ Standard
Library basics, we should learn about the notable features
Introduced in a several C++ standards. In the beginning, start with
the following standards:

e C++11
e C++14
e C++17

13

What to learn next?

Once we learn the C++ basics, what to learn next? What are the
topics that make up intermediate and advanced C++?

e C++idioms

* Concurrency through multithreading

* Runtime polymorphism

* In-depth template metaprogramming

* Guidelines, dos and don’ts, avoiding pitfalls
* Software design using C++

14

C++ idioms

Learn about some of the typical C++ idioms, such as:
e RAII

* The erase-remove idiom

 PIMPL

* Other idioms (that best suit your use-case)

15

Concurrency through multithreading

The C++ Standard Library offers support for multithreading,
mutexes, locking mechanisms, and other related features. Explore:

* std::thread

* std::lock_guard

* std::mutex

* Future and promise wrappers
* other facilities...

16

Polymorphism

 Learn about virtual and overridden member functions
* Using the std::unique_ptr to achieve runtime polymorphism

* Creating and using interfaces

Also, explore the following topics:
* Curiously Recurring Template Pattern

e std::variant

17

In-depth template metaprogramming

Once you are familiar with the template basics, learn about:
* Template inheritance

* Specialization

* Explicit instantiation

* Other topics

18

Guidelines, dos and don’ts, avoiding pitfalls

* Learn about some of the C++-specific guidelines, best practices,
and common pitfalls to avoid.

* Please note that you don't have to know all the guidelines by
heart, but you should be aware of their existence. Many of them
are already implemented in static code analyzers.

19

Software design using C++

If you're interested in software architecture and design, learn about
the:

* SOLID and other principles
* Design patterns in general

This helps when aiming for:
* An elegant and maintainable framework
* The separation of concerns

20

Thank you!

Q&A

	Slide 1: From Introductory to Advanced C++
	Slide 2: About me
	Slide 3: Starting with C++
	Slide 4: The C++ Language Basics
	Slide 5: The C++ Standard Library basics
	Slide 6: Modern C++ standards
	Slide 7: What should we learn in the beginning?
	Slide 8: What should we learn when it comes to C++ functions?
	Slide 9: How do we start learning about C++ classes?
	Slide 10: Learning about classes – next steps
	Slide 11: How do we start learning about C++ templates?
	Slide 12: How do we learn the C++ Standard Library?
	Slide 13: Learning about different C++ standards
	Slide 14: What to learn next?
	Slide 15: C++ idioms
	Slide 16: Concurrency through multithreading
	Slide 17: Polymorphism
	Slide 18: In-depth template metaprogramming
	Slide 19: Guidelines, dos and don’ts, avoiding pitfalls
	Slide 20: Software design using C++
	Slide 21: Thank you!

