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Starting with C++

When starting with C++, first, we need to learn about the following
topics in the following order:

* The C++ language basics
* The C++ Standard Library basics

e Modern C++ standards

Establishing a solid knowledge-base is essential in the beginning.



The C++ Language Basics

* Types

* Declarations

* Operands

* Operators

* Expressions

e Statements

* Functions

* Classes

* Templates Basics (only a brief introduction is advised in the beginning)
* More, much more...



The C++ Standard Library basics

The C++ Standard Library basics include learning about the widely
used:

 Containers
* Algorithms



Modern C++ standards

* Modern C++ standards are C++11, C++14, C++17, C++20 and
C++23 standards.

* |nitially, we should concentrate on the notable features
of C++11, C++14, and C++17 standards, as those are the most
widely used standards in the industry.



What should we learn in the beginning?

° Built_in types o Statements
e Built-in statements
* Scope and lifetime

e Declaration

* Definition « Automatic and dynamic storage
* Initialization  References

* Operands * Functions

* Operators * more...

* Expressions



What should we learn when it comes to C++
functions?

* Function declarations
* Function definitions
* Invoking a function

* Passing arguments by value, reference, and const-reference
* The return statement
* Function overloads



How do we start learning about C++ classes?

* Data members

* Member functions

* An instance of a class
* Visibility specifiers

* Constructors

* Member initializer lists
* Destructors



Learning about classes — next steps

* Copy and move semantics in C++

* Operator overloading

* Inheritance

* Virtual and overridden member functions
* Polymorphism

* Interfaces
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How do we start learning about C++
templates?

* Basic function template declaration

* Basic class template declaration

* Template specialization

The right amount of template introduction

In the beginning, only a brief introduction to C++ template
programming is advised.
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How do we learn the C++ Standard Library?

When starting with the C++ Standard Library, learn about the
following topics:

* Widely used containers (std::vector, std::array, std::set, std::map,
std::list...)

* [terators

* Widely used functions (std::find, std::find_if, std::sort, std::count,
std::count_if...)

We do not have to learn the entire standard library by heart. Initially,
we need to establish a solid knowledge base.
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Learning about different C++ standards

Once we are familiar with the C++ language and C++ Standard
Library basics, we should learn about the notable features
Introduced in a several C++ standards. In the beginning, start with
the following standards:

e C++11
e C++14
e C++17
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What to learn next?

Once we learn the C++ basics, what to learn next? What are the
topics that make up intermediate and advanced C++?

e C++idioms

* Concurrency through multithreading

* Runtime polymorphism

* In-depth template metaprogramming

* Guidelines, dos and don’ts, avoiding pitfalls
* Software design using C++
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C++ idioms

Learn about some of the typical C++ idioms, such as:
e RAII

* The erase-remove idiom

 PIMPL

* Other idioms (that best suit your use-case)
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Concurrency through multithreading

The C++ Standard Library offers support for multithreading,
mutexes, locking mechanisms, and other related features. Explore:

* std::thread

* std::lock_guard

* std::mutex

* Future and promise wrappers
* other facilities...
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Polymorphism

 Learn about virtual and overridden member functions
* Using the std::unique_ptr to achieve runtime polymorphism

* Creating and using interfaces

Also, explore the following topics:
* Curiously Recurring Template Pattern

e std::variant
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In-depth template metaprogramming

Once you are familiar with the template basics, learn about:
* Template inheritance

* Specialization

* Explicit instantiation

* Other topics
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Guidelines, dos and don’ts, avoiding pitfalls

* Learn about some of the C++-specific guidelines, best practices,
and common pitfalls to avoid.

* Please note that you don't have to know all the guidelines by
heart, but you should be aware of their existence. Many of them
are already implemented in static code analyzers.
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Software design using C++

If you're interested in software architecture and design, learn about
the:

* SOLID and other principles
* Design patterns in general

This helps when aiming for:
* An elegant and maintainable framework
* The separation of concerns
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Thank you!

Q&A
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